GCE Examinations Advanced Subsidiary / Advanced Level

Mechanics Module M2

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

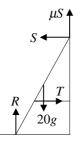
M2 Paper E - Marking Guide

1. $I = \Delta \text{mom.}$ $12\mathbf{i} - 9\mathbf{j} = 0.6[(5\mathbf{i} + 3\mathbf{j}) - \mathbf{u}]$ $20\mathbf{i} - 15\mathbf{j} = 5\mathbf{i} + 3\mathbf{j} - \mathbf{u}$ $\mathbf{u} = -15\mathbf{i} + 18\mathbf{j}$

- M1 A1 M1 A1
- **(4)**

2. (a) when t = 0, $x = 2 + 0 - \frac{1}{10} = 1.9$ m

M1 A1


(b) $v = \frac{dx}{dt} = 1 - \frac{1}{10}e^{t}$ at rest when v = 0 $1 - \frac{1}{10}e^{t} = 0$ \therefore $e^{t} = 10$

A1

 $t = \ln 10 = 2.3 \text{ (1dp)}$

M1 A1 A1 (6)

3. (a)

B2

(b) resolve \uparrow : $R + \mu S - 20g = 0$: $R = 20g - \mu S$ resolve \rightarrow : T - S = 0 : S = Teliminating S gives $R = 20g - \frac{1}{2}T$

- M1
- resolve \rightarrow : T S = 0 \therefore S = T M1 eliminating S gives $R = 20g \frac{1}{3}T$
 - M1 A1
- mom. about top of ladder $T(4\sin\theta) + 20g(3\cos\theta) R(6\cos\theta) = 0$ $4T\tan\theta + 60g - 6R = 0$
- M1 A1
- (c) attach rope lower down ladder/wall gives larger moment about top of ladder with same tension

10T + 60g - 120g + 2T = 0 : 12T = 60g and T = 5g

B1 B1 (11)

4. (a) (i), (ii)

portion	mass	X	у	mx	my
AB	$2a\rho$	0	a	0	$2a^2\rho$
BC	Зар	$\frac{3}{2}a$	0	$\frac{9}{2}a^2\rho$	0
CD	αρ	3 <i>a</i>	$\frac{1}{2}a$	$3a^2\rho$	$\frac{1}{2}a^2\rho$
total	6ар	\overline{x}	\overline{y}	$\frac{15}{2}a^2\rho$	$\frac{5}{2}a^2\rho$

 ρ = mass per unit area x, y coords. taken horiz./ vert. from B

$$\overline{x} = \frac{\frac{15}{2}a^2\rho}{6a\rho} = \frac{5a}{4}$$
 from AB

$$\overline{y} = \frac{\frac{5}{2}a^2\rho}{6a\rho} = \frac{5a}{12}$$
 from BC

M1 A1

(b)
$$2a - \frac{5a}{12} = \frac{19a}{12}$$

A1

$$\tan \theta = \frac{\frac{5}{4}a}{\frac{19}{12}a} = \frac{15}{19} : \theta = 38^{\circ} \text{ (nearest degree)}$$

M2 A1 (12)

5.	(a)	$\frac{P}{v} - R - mg\sin\alpha = 0$	M1 A1	
		$\frac{P}{20} - 4400 - 40000(9.8) \frac{1}{20} = 0$	M1	
		P = 20(4400 + 19600) = 480000 W = 480 kW	M1 A1	
	<i>(b)</i>	$\frac{P}{v} - R = ma$: $\frac{480000}{20} - 4400 = 40000a$	M1 A1	
		$a = 0.49 \text{ ms}^{-2}$	A1	
	(c)	at max. speed, $a = 0$: $\frac{P}{v} - R = 0$	M1	
		$\frac{480000}{v}$ - 4400 = 0 so $v = 109 \text{ ms}^{-1}$ (3sf)	M1 A1	
	(d)	model not suitable – lorry unable to attain 109 ms ⁻¹ (≈ 245 mph)	B2	(13)
6.	(a)	cons. of mom: $2M(U) + 0 = 2M(V) + 5M(4)$	M1	
		U = V + 10	A1	
		$\frac{4-V}{V} = \frac{3}{7}$: $4-V = \frac{3}{7}$ U	M1 A1	

6. (a) cons. of mom:
$$2M(U) + 0 = 2M(V) + 5M(4)$$
 M1
 $U = V + 10$ M1 A1
 $\frac{4-V}{U-0} = \frac{3}{4}$ $\therefore 4 - V = \frac{3}{4}U$ M1 A1
solve simul. giving $U = 8$ M1 A1
(b) $s_y = -\frac{1}{2}gt^2 = -19.6$, $t^2 = 4$ $\therefore t = 2$ M2 A1
(c) $v_x = 4$, $v_y = 0 - gt = -19.6$ M1 A1
req'd angle = $tan^{-1}\frac{19.6}{4} = 78.5^{\circ}$ (3sf) below horizontal M1 A1 (13)

7. (a) ά

> m =mass of Pd = AB

resolve perp. to plane: $R - mg\cos\alpha = 0$: $R = mg(\frac{3}{5})$ M1 A1

frictional force = $\mu R = \frac{12}{35} mg$ **A**1

work done against friction = loss in KE – gain in PE M1

 $\frac{12}{35} mgd = \frac{1}{2} m(5.6)^2 - mgd\sin\alpha = 15.68m - \frac{4}{5} mgd$ M2 A2

 $\frac{40}{35}$ $gd = \frac{1}{2} (5.6)^2$: d = 1.4 m M1 A1

(b) work done against friction = loss in KE (as PE returns to initial value) $\frac{12}{35}$ mg × 2.8 = $\frac{1}{2}$ m(5.6² – v²) M2 A1 $1.92g = 5.6^2 - v^2$ M1 $v^2 = 12.544$: $v = 3.5 \text{ ms}^{-1} \text{ (2sf)}$

> (75)Total

(16)

M1 A1

Performance Record – M2 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i, j impulse	variable accel.	statics	centre of mass	power	collisions, projectiles	work - energy	
Marks	4	6	11	12	13	13	16	75
Student								